Fascinated with nature I did my Batchelors thesis on reproducing the Bouligand structure present in the shell of Odontodactylus Scyllarus using lamination of carbon fiber. I produced and tested many samples and lead a long, two-year research that included cooperations with several institutions (ex. FZT Poland, Moratex, AGH University of Science and Technology) and got published at national and international conferences.
What is Odontodactylus Scyllarus ?
The Peacock Mantis Shrimp (Odontodactylus Scyllarus) is a small crustacean, that hunts using batons resembling hammers, with which it strikes its prey with incredible speed. These deadly tools are the front legs of the shrimp. Despite the small size of the animal (several centimetres), one blow is capable of breaking the fingers of an adult human. This is because the animal strikes with the speed and force of a bullet fired from a gun. Such rapid movement under water causes the phenomenon of cavitation, i.e. the creation of a of a momentary vacuum behind a rapidly moving object and the subsequent merging of the of the atoms of the medium separated in this way. The reconnection of water molecules separated by the movement of the baton causes microscopic explosions, which strike the prey, but also put enormous pressure on the weapon of the predator.
source: Wikipedia Odontodactylus scyllarus
source: Wikipedia Bouligand Structure
What is a bouligand structure ?
The fibres of each layer are offset from the preceding layer by a certain angle, which in cross-section takes the shape of a spiral, somewhat similar to human DNA. In experiments carried out to date by Sheila' Patek and David Kisailus, it has been shown that this type of arrangement actually increases the impact properties of the material under test.
Testing
In my samples I assumed a 10 degree desorientation in between carbon fiber layers, which according to literature is in the optimal range for mechanically improbing the materials durability.
During tensile simulations (I used ANSYS Workbench for FEM simulation) and three point flexural testing samples proved to confirm my thesis and displayed interesting mechanical reaction that can classify it as a metamaterial (material whose structure modifies its properties). Those properties being dissipating energy in a spiral form and possibility of inducing movement in material under pressure.
source: Private Archive
A similar, yet simplified design was also implemented by me into rocket fins of "3TTK" sounding rocket created in AGH Space Systems association. Thanks to investigating and producing this carbon laminate our team managed to obtain unusually good mechanical properties for the rockets construction.
Paper published for researching materials to use in "3TTK" sounding rocket:
1. Polska norma PN-EN-ISO 527-4:2000, „Tworzywa sztuczne -- Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu -- Warunki badań kompozytów tworzywowych izotropowych i ortotropowych wzmocnionych włóknami”, rok 2000
2. Polska norma PN-EN-ISO 527-1:1998, „Tworzywa sztuczne -- Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu -- Zasady ogólne”, rok 1998
3. Amerykańska norma ASTM D3039:2014, "Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials”, rok 2014
4. ASTM D3039 Polymer and Composite Tensile Tests (laboratuar.com), (uzyskano dostęp 16.09.2021)
5. https://www.intertek.com/polymers/tensile-testing/matrix-composite/, (uzyskano dostęp 02.10.2021)
6. https://www.instron.com/pl-pl/testing-solutions/by-standard/astm/multiple-testingsolutions/astm-d3039?region=Poland, (uzyskano dostęp 01.10.2021)
7. N. Suksangpanyaa, N. A. Yaraghi, R. B. Pipes, D. Kisailus, P. Zavattieri, “Crack twisting and toughening strategies in Bouligand architectures”, International Journal of Solids and Structures 150 (2018) 83-106
8. Acta Biomaterialia “Identifying the optimal pitch angles for Bouligand structures”, Manuscript Number: AB-20-2146
9. S. Yin, W. Yang, J. Kwon, A. Wat, M. A. Meyers, R. O. Ritchie, “Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials”, J. Mechanics & Physics of Solids, vol. 131, 2019, pp. 204-20.
10. W. Ouyang, B. Gong, H. Wang, F. Scarpa, B. Su, H. Peng, “Identifying optimal rotating pitch angles in composites with Bouligand structure”, Composites Communications 23 (2021) 100602
11. I. Greenfeld, I. Kellersztein & H. D. Wagner, “Nested helicoids in biological microstructures”, Nature Communications, DOI: https://doi.org/10.1038/s41467-019- 13978-6
12. L. Mencattelli, S. T. Pinho, “Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage”, Composites Science and Technology 182 (2019) 107684 58
13. L.K. Grunenfelder, N. Suksangpanya, C. Salinas, G. Milliron, N. Yaraghi, S. Herrera, K. Evans-Lutterodt, S.R. Nutt, P. Zavattieri, D. Kisailus, “Bio-Inspired Impact Resistant Composites”, Acta Biomaterialia
14. J. William Pro b , F. Barthelat, “Is the Bouligand architecture tougher than regular cross-ply laminates? A discrete element method study”, Extreme Mechanics Letters 41 (2020) 101042 15. X. Qin, B. C. Marchi, Z. Meng and S. Keten, “Impact resistance of nanocellulose films with bioinspired Bouligand microstructures”, Nanoscale Adv., 2019, 1, 1351
16. L. Amorim, A. Santos, J.P. Nunes, G. Dias, J.C. Viana, “Quasi static mechanical study of vacuum bag infused bouligand inspired composites”, Polymer Testing 100 (2021) 107261
17. S. Yina, W. Yang, J. Kwonc , A. Wat, M. A. Meyers, R. O. Ritchie, “Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials”, Journal of the Mechanics and Physics of Solids 131 (2019) 204-220
18. J. Körbelina, P. Goralski, B. Kötter, F. Bittner, H. J. Endres, B. Fiedler, “Damage tolerance and notch sensitivity of bio-inspired thin-ply Bouligand structures”, Composites Part C: Open Access 5 (2021) 100146
19. https://www.wired.com/story/the-mantis-shrimp-inspires-a-new-material-made-bybacteria/ (uzyskano dostęp 10.10.2021)
20. A. Dąbrowska, „Biomimetyzm i nanotechnologia – materiały i rozwiązania inspirowane naturą”, DOI: 10.15199/148.2017.1.1
21. Sitki M., R.S. Fearing. 2003. „Synthetic gecko foot-hair micro/nano-structures as dry adhesive”, J.Adhesion Sci. Technology 117: 1055–1073
22. S. N. Patek, W. Korff, R.Caldwell “Deadly strike mechanism of a mantis shrimp ”. Nature 428(6985):819-20, May 2004
23. L. Wen, J. C. Weaver, G. V. Lauder, “Biomimetic shark skin: design, fabrication and hydrodynamic function”, J Exp Biol (2014) 217 (10): 1656–1666
24. A. Królicka, K. Trębacki, „Próby wytrzymałościowe kompozytów polimerowych”, Bezpieczeństwo i ekologia, Autobusy 9/2017
25. https://kompozyty.net/kompozyty-lotnictwie-analiza-rynku/ (uzyskano dostęp 13.01.2022)
26. http://graw.net.pl/oferta/tabliczki-znamionowe/laminat-grawerski/ (uzyskano dostęp 17.01.2022)
27. https://www.pkt.pl/artykul/laminaty-w-budownictwie-i-wnetrzach-8642 (uzyskano dostęp 18.01.2022)
28. Shark Skin is Made Up of Millions of Microscopic 'Teeth' | wfaa.com (uzyskano dostęp 20.12.2021) 29. https://www.comsol.com/model/material-characteristics-of-laminated-compositeshell-67691 (uzyskano dostęp 20.12.2021)
30. Wymyślone przez naturę (gosc.pl) (uzyskano dostęp 20.12.2021)
31. Gecko foot hairs, SEM - Stock Image - C014/4849 - Science Photo Library (uzyskano dostęp 20.12.2021)
32. https://www.nasa.gov/sites/default/files/files/R_Gupta-Think_Like_Geckskin.pdf (uzyskano dostęp 20.12.2021)
33. www.cfd.ninja, (uzyskano dostęp 08.01.2022)
34. www.cda.ninja, (uzyskano dostęp 08.01.2022)
35. D. R. White, S. E. Benzley, G. D. Sjaardema, “Automated Hexahedral Mesh Generation by Virtual Decomposition”, ReaserchGate Article · May 1996 Source: CiteSeer